Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations
نویسندگان
چکیده
This paper reports the use of molecular dynamics simulations to study the thermomechanical properties of an epoxy molding compound formed by curing tri/tetra-functionalized EPN1180 with Bisphenol-A. An interactive crosslinking-relaxation methodology is developed to construct the simulation cell. This crosslinking-relaxation methodology allows the construction of highly crosslinked polymer network from a given set of monomers. Based on this computational algorithm, three-dimensional simulation cells can be constructed. By using an existing polymer consistent force-field, several thermomechanical properties of the model epoxy are computed such as the curing induced shrinkage, gelation point, coefficient of thermal expansion, glass transition temperature, Young’s modulus and Poisson’s ratio. The dependence of these properties on crosslink density and temperature is also investigated. Simulated results are compared with existing theoretical or experimentally measured values when available. Good agreements are observed. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
A coarse-grained model for epoxy molding compound.
We present a coarse-grained model for molecular dynamics simulations of an epoxy system composed of epoxy phenol novolac as epoxy monomer and bisphenol-A as the cross-linking agent. The epoxy and hardener molecules are represented as short chains of connected beads, and cross-linking is accomplished by introducing bonds between reactive beads. The interbead potential, composed of Lennard-Jones,...
متن کاملExperimental Study on Amine-Functionalized Carbon Nanotubes’ Effect on the Thermomechanical Properties of CNT/Epoxy Nano-composites
This paper investigated the effect of the amine-functionalized carbon nanotubes (CNTs) on the thermomechanical properties of CNT/epoxy nanocomposites. Mechanical stirring and ultra-sonication were utilized to uniformly disperse CNTs into the epoxy matrix. Non-functionalized and amine-functionalized CNTs with different weight percentages (wt. %) were mixed into the epoxy resin. Using standard te...
متن کاملDesigned-in Molecular Interactions Lead to Superior Thermo-mechanical Properties in Nanocomposites
The effect of the nanofiller chemistry on the mechanical behaviour of thermoset polymer matrix nanocomposites is investigated. The interaction between a crosslinked polymer resin and the reinforcing nanofibers driven by their chemistry is revealed by molecular dynamics simulations. Specifically, crosslinked network systems of neat epoxy and epoxy-P(St-co-GMA) are modeled to discuss the effect o...
متن کاملMolecular modeling of crosslink distribution in epoxy polymers
Experimental studies on epoxies report that the microstructure consists of highlycrosslinked localized regions connected with a dispersed phase of low-crosslink density epoxy. Because epoxies play a major role in many structural applications, the influence of the crosslink distribution on the thermo-mechanical properties must be determined. But as experiments cannot reliably report the exact nu...
متن کاملMechanical Properties and Morphologies of Carboxyl-Terminated Butadiene Acrylonitrile Liquid Rubber/Epoxy Blends Compatibilized by Pre-Crosslinking
In order to enhance the compatibilization and interfacial adhesion between epoxy and liquid carboxyl-terminated butadiene acrylonitrile (CTBN) rubber, an initiator was introduced into the mixture and heated to initiate the cross-linking reaction of CTBN. After the addition of curing agents, the CTBN/epoxy blends with a localized interpenetrating network structure were prepared. The mechanical p...
متن کامل